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The phase behavior of a system of hard-cut spheres has been studied using a high-order virial theory and by
Monte Carlo simulation. The cut-sphere particles are disks of thickness L formed by symmetrically truncating
the end caps of a sphere of diameter D. The virial theory predicts a stable nematic phase for aspect ratio
L /D=0.1 and a stable cubatic phase for L /D=0.15–0.3. The virial series converges rapidly on the equation of
state of the isotropic and nematic phases, while for the cubatic phase the convergence is slower, but still gives
good agreement with the simulation at high order. It is found that a high-order expansion �up to B8� is required
to predict a stable cubatic phase for L /D�0.15, indicating the importance of many-body interactions in
stabilizing this phase. Previous simulation work on this system has focused on aspect ratios L /D=0.1, 0.2, and
0.3. We expand this to include also L /D=0.15 and 0.25, and we introduce a fourth-rank tensor to measure
cubatic ordering. We have applied a multiparticle move which dramatically speeds the attainment of equilib-
rium in the nematic phase and therefore is of great benefit in the study of the isotropic-nematic phase transition.
In agreement with the theory, our simulations confirm the stability of the nematic phase for L /D=0.1 and the
stability of the cubatic phase over the nematic for L /D=0.15–0.3. There is, however, some doubt about the
stability of the cubatic phase with respect to the columnar. We have shown that the cubatic phase found on
compression at L /D=0.1 is definitely metastable, but the results for L /D=0.2 were less conclusive.
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I. INTRODUCTION

It is well known experimentally that disk-shaped as well
as rod-shaped particles can form liquid-crystalline phases. In
particular, discotic nematic and columnar phases have been
observed. In simulations, there have been a variety of models
proposed for discotic liquid crystals. Among the purely re-
pulsive hard-particle models are infinitely thin disks �1� or
hard ellipsoids �2�. In the latter case, both rod-shaped and
discotic particles could be simulated by varying the aspect
ratio. In both these hard-repulsive-particle systems, a nem-
atic phase was observed, but no columnar phase. Columnar
phases can be found in systems which include attractive in-
teractions favoring the face-to-face stacking of disks—e.g.,
the discotic form of the Gay-Berne potential �3� or hard el-
lipsoids with additional attractive interactions �4�. Caprion et
al. investigated the effect of shape and energy anisotropies in
the Gay-Berne potential for discotic particles �5�. Another
discotic model, similar to the Gay-Berne model was pro-
posed by Zewdie �6�. The parameters can be tuned to favor
different kinds of ordering—e.g., nematic or columnar. There
have also been studies aimed more at simulating particular
discotic molecules known to exhibit liquid crystalline
phases—e.g., an atomistic study of hexabenzocoronene de-
rivatives �7� or the proposal of a coarse-grained interaction
potential for polyaromatic hydrocarbons based on density-
functional-theory calculations �8�.

One model without attractive interactions which neverthe-
less does exhibit a columnar phase is the system of hard-cut
spheres—i.e., spheres of diameter D with their end caps

symmetrically truncated to form disks of thickness L. The
phase diagram was first mapped out by Veerman and Frenkel
�9� using Monte Carlo simulations in the constant-NVT en-
semble. In addition to the nematic and columnar me-
sophases, an interesting “cubatic” phase was reported. In this
phase, the particles form short stacks of typically four or five
particles with neighboring stacks tending to be perpendicular
to one another. The particles thus align along three perpen-
dicular axes giving a phase with cubic orientational symme-
try.

A more recent study of the cut-sphere system focused on
the effect of confinement on the isotropic-nematic phase
transition �10�, but did not investigate the cubatic phase.
There have been two further papers which report some lim-
ited simulation results as part of larger studies. Zhang et al.
�11� performed simulations of mixtures of colloidal platelets
and nonadsorbing polymers, but also report some results for
the pure cut-sphere system with aspect ratio L /D=0.1, and
van der Beek et al. �12� obtained the equation of state for
L /D=1 /15 in support of their experimental work on colloi-
dal platelets.

Consideration of the cubatic phase in cut spheres, where
particles with aspect ratio L /D=0.2 form stacks of four or
five particles, led Blaak et al. �13� to speculate whether a
system of cylinders with a length to diameter ratio of 0.9
might also exhibit a similar cubatic phase. However, they did
not find such a phase in their simulations.

Besides hard-cut spheres, the cubatic phase is also pre-
dicted theoretically to occur in some other systems. These
include Onsager crosses �14� and tetrapods �15�. A cubatic
phase has also been reported in simulations of hard cuboids
�16,17�. This phase is slightly different in nature to that ob-
served in the cut-sphere system. It is the axes of the particles*P.D.Duncan@durham.ac.uk
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themselves which align in a structure with cubic symmetry,
rather than stacks of particles.

In two dimensions, the cut-disk system exhibits a phase
analogous to the cubatic phase with perpendicular stacks of
particles �18� and the hard-rectangle system exhibits a “tet-
ratic” phase in which the particles align preferentially along
two orthogonal directions, but with no translational order
�19,20�.

To our knowledge the cubatic phase has never been ob-
served in the laboratory, although a method has recently been
devised to make tetrapod-shaped nanocrystals �21�. This
raises the possibility of observing the cubatic phase experi-
mentally in colloidal suspensions of these particles.

In this paper, we reexamine the phase diagram of the
hard-cut sphere system using a high-order virial theory and
by Monte Carlo computer simulation. Veerman and Frenkel’s
earlier simulation study focused on aspect ratios L /D=0.1,
0.2, and 0.3. We extend this to include L /D=0.15 and 0.25.
Our theory and simulations both find a stable nematic phase
for L /D=0.1. For L /D�0.15 there is no nematic phase, but
instead we find a cubatic phase. A high-order virial expan-
sion �up to B8� was needed to predict the stability of the
cubatic phase over the nematic, emphasizing the importance
of many-body interactions in stabilising the cubatic phase.
Previous studies of liquid-crystalline phases using the virial
series have shown good convergence of the predicted equa-
tions of state for truncation at B8-level theory �22,23�. Here,
the virial equations of state show good agreement with the
equations of state obtained in the simulations.

In our simulations, we identify the phases from snapshots
and by using various pair distribution functions. We also in-
troduce a fourth-rank tensor order parameter to measure cu-
batic order from which it is possible to obtain the cubatic
axes. Our simulations confirm the stability of the cubatic
phase relative to the nematic phase for L /D�0.15, but it is
less clear whether the cubatic is metastable with respect to
the columnar phase. By performing long runs for L /D=0.1
at a single state point, we were able to demonstrate that the
cubatic phase will convert into a columnar, showing that the
cubatic phase is metastable in this case. The results were less
conclusive in the L /D=0.2 case.

It was found that extremely long runs were required to
equilibrate the ordered phases. In an attempt to alleviate this
problem, we have implemented a multiparticle move due to
Jaster �24� and show that it is very effective for the study of
the isotropic-nematic phase transition.

II. SIMULATION DETAILS

Monte Carlo simulations were carried out on systems of
216, 512, or 1728 hard-cut spheres with aspect ratios L /D
=0.1, 0.15, 0.2, 0.25, and 0.3 in the NPT ensemble. Details
of the overlap criteria for cut spheres can be found in Ref.
�25�. Volume moves were carried out after every cycle. We
define a cycle as one attempted move per particle. In high-
density ordered phases the structure may be incommensurate
with the periodic boundary conditions if a cubic simulation
cell is used. We therefore allowed the x, y, and z box lengths
to vary independently in such cases.

For all values of L /D we have performed compression
runs starting at low pressure in the isotropic phase and an
expansion run starting from a close-packed solid configura-
tion at high pressure. Expansion and compression runs were
also performed starting from an equilibrated configuration at
a state point in the nematic �L /D=0.1� or cubatic �L /D
�0.15� phase. Typical production runs were 2�105 Monte
Carlo �MC� cycles in length after equilibration runs of com-
parable length, but in excess of 106 MC cycles were required
for equilibration near phase transitions.

We use the following reduced units. The reduced density
is defined as �*=� /�CP, where

�CP =
2�D/L�

�3 − �L/D�2
�1�

is the density of the close-packed solid structure. The re-
duced pressure is defined by P*= Pv0 /kBT, where v0 is the
volume of a particle:

v0 =
�

12
D3 L

D
�3 − � L

D
�2	 . �2�

A. Distribution functions

We have measured various pair correlation functions in
order to probe the structure of the system. g�r
� and g�r�� are
useful in the columnar phase. Here r
 and r� are the distance
in the direction parallel and perpendicular to the orientation
of the particle at the origin, respectively. In the columnar
phase, g�r
� probes correlations along the columns and g�r��
describes the two-dimensional packing of the columns.
gP�r�� is like g�r�� except that we only consider particles
which are within a distance of L /2 of the equatorial plane of
the particle at the origin. The orientational correlation func-
tions gl�r� are defined as gl�r�= �Pl�cos ���, where Pl is the
lth Legendre polynomial and � is the angle between a par-
ticle at the origin and a particle a distance r away.

B. Order parameters

As an order parameter in the nematic phase, we used the
standard second-rank order tensor

S�� = u�u� −
1

3
	��, �3�

where u is a unit vector normal to the cut sphere. We define
an order parameter Snem as the largest eigenvalue of this ten-
sor.

To quantify cubatic order, we define the fourth-rank ten-
sor

Q��
	 =
35

8
u�u�u
u	 −

5

8
�u�u�	
	 + u�u
	�	 + u�u		�


+ u�u
	�	 + u�u		�
 + u
u		���

+
1

8
�	��	
	 + 	�
	�	 + 	�		�
� . �4�
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This is the fourth-rank irreducible tensor, closely related to
the set of fourth-rank spherical harmonics. It is highly sym-
metric and has the following properties:

Q��
		
	 = 0, �5�

Q��
	u
u	 = 0. �6�

In a cubatic phase the average of Q is given by

�Q��
	� =
Scub

3 
i=1

3 �35

8
xi�xi�xi
xi	 −

5

8
�xi�xi�	
	 + xi�xi
	�	

+ xi�xi		�
 + xi�xi
	�	 + xi�xi		�
 + xi
xi		���

+
1

8
�	��	
	 + 	�
	�	 + 	�		�
�	 , �7�

where xi is a unit vector along the ith Cartesian axis in the
frame of the cubatic phase. For perfect cubatic ordering, with
molecules pointing with probability 1 /3 along each of the
three axes, Scub=1. Noting that

xi�xi� = 	��, �8�

with the summation convention employed over the index i,
we can simplify the above expression, obtaining �with no
summation over j�,

�Q��
	�xj
xj	 =
7Scub

8
�xj�xj� −

1

3
	��� . �9�

Since �Q��
	�	
	=0, we have the following eigentensor
equation:

�Q��
	��xj
xj	 −
1

3
	
	� =

7Scub

8
�xj�xj� −

1

3
	��� �10�

or

�Q��
	�S
	 =
7Scub

8
S��, �11�

where we define a second-rank tensor S. For each of the five
independent elements of the eigentensor, �� ,��
= �x ,x� , �x ,y� , �x ,z� , �y ,y� , �y ,z�, we can explicitly write out
Eq. �11�. This gives us a set of five simultaneous equations,
which can be written as an ordinary eigenvalue problem with
maximum eigenvalue 7Scub /8. From the eigenvector of this
equation �with components Sxx ,Sxy ,Sxz ,Syy ,Szz� the full
second-rank eigentensor can be reconstructed using the sym-
metries Sxy =Syx, etc., and the fact that Sxx+Syy +Szz=0. Fi-
nally, the eigenvectors of S should give the three orthogonal
cubatic axes.

In summary, to calculate the cubatic order parameter and
axes in a simulation, the following steps should be per-
formed. �i� Form Q��
	 using the orientations of the particles
in the system. �ii� Set up the five simultaneous equations
from the eigentensor equation �Eq. �11��. �iii� Diagonalize
this matrix. The cubatic order parameter can be obtained
from the largest eigenvalue 7Scub /8. �iv� Reconstruct S from
the eigenvector of this last matrix. The eigenvectors of S give
the cubatic axes.

III. VIRIAL THEORY

The Helmholtz energy A of N particles with volume V and
temperature T may be written as

A = A0 + NkBT�� f�u�ln�4�f�u��du − 1 + ln �

+ 
n=2

1

n − 1
Bn�n−1� , �12�

where A0 is an ideal gas contribution, related to rotational
motion, Bn is the nth virial coefficient, f�u� is the one-
particle distribution function of particle orientation u, and �
is the particle number density N /V.

f�u� is determined as the function that minimizes A, sub-
ject to the normalization condition

� f�u�du = 1. �13�

At low densities, the only solution is f�u�= 1
4� , which corre-

sponds to the isotropic phase. At higher densities, other so-
lutions also appear. To investigate nematic formation, On-
sager assumed that f�u� takes the form

f�u,�� = ��/4� sinh����cosh�� cos �� , �14�

where � is a parameter describing the nematic ordering of
the system about the director z and ranges from 0 for isotro-
pic ordering �f�u�= 1

4� � to � for “perfect” nematic ordering.
� is the angle that each particle makes with this director. The
nematic virial coefficients are also dependent on f�u�. The
expression for the second virial is given as

B2��� = −
1

2V
� � � � f�u1�f�u2�f12du1du2dr1dr2,

�15�

where f12 is the Mayer f bond between particles 1 and 2,
which, for hard particles, is 0 when the particles are overlap-
ping and −1 when they are not. The calculation of B3 is more
complex. The integral to be solved is

B3��� = −
1

3V
� � � � � � f�u1�f�u2�f�u3�f12f23f31

�du1du2du3dr1dr2dr3. �16�

The general integral for the nth virial coefficient is

Bn��� =
1 − n

n!V
� ¯� f�u1� ¯ f�un�Vndu1 ¯ dundr1 ¯

�drn, �17�

where

Vn = 
Sn

�
i�j

n

f ij . �18�

Here, the sum over Sn represents the sum over all star dia-
grams with n points. The virials are calculated using a modi-
fied Ree-Hoover method �26�. Each virial coefficient is cal-
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culated for various values of �, from isotropic to perfect
nematic ordering. This gives us the virial coefficients as a
function of �. The Helmholtz energy can be minimized with
respect to � at a given �, thus giving the ordering of the
system at that density. From the Helmholtz energy, the pres-
sure and chemical potential of the system at a given density
can now be calculated for the nematic phase. In the isotropic
phase, the value of � is kept as 0. For coexistence, the fol-
lowing criteria must be satisfied:

N��nem� = I��iso� �19�

and

PN��nem� = PI��iso� . �20�

This method can be adapted for the cubatic liquid-
crystalline phase. The first step is to modify the one-particle
distribution function to take the cubic orientational ordering
of the cubatic phase into account. Modifying the Onsager
trial function �Eq. �14�� gives

f�u� = fx + fy + fz, �21�

with

fx = � �

12� sinh����cosh�� sin � cos �� �22�

fy = � �

12� sinh����cosh�� sin � sin �� �23�

fz = � �

12� sinh����cosh�� cos �� , �24�

where � is the angle that the particle director makes with the
x-axis cubatic director. � now describes the cubatic ordering
of the system. This is then used to calculate the virial coef-
ficients, using Eq. �17�. With the virials calculated and the
distribution function known, the Helmholtz energy �Eq. �12��
can be minimized with respect to � to give the cubatic order
of the system as a function of density. Again, from the Helm-
holtz free energy the chemical potential and pressure can be
calculated and using the conditions

C��cub� = I��iso� �25�

and

PC��cub� = PI��iso� , �26�

the coexistence densities of the isotropic and cubatic phases
can be found. For the cubatic phase to be stable with respect
to the nematic phase, the coexistence density must be lower
than that for the nematic phase. We can also seek to locate
any nematic-cubatic transitions using these methods. Simu-
lation indicates, however, that this transition does not occur,
so we concentrate here on isotropic–liquid-crystalline transi-
tions.

While it is computationally convenient to assume a pa-
rametrized trial function for f�u�, one may ask how this as-
sumption affects the quality of the predictions. We have
therefore also expanded the first five orientational virial co-

efficients in a large orientational basis set and thus calculated
a high quality f�u�. Our current results compare well with
this more exact treatment. This issue will be discussed fur-
ther in a future publication.

The virial expression used here provides no information
about local, short-range positional order. By this, we mean
the shell structure found in simple isotropic fluids and the
small stack structures reported in the cubatic phase �9�. The
effects of this local structure on thermodynamic properties
are included in the various integrations required to calculate
the virial coefficients. One can obtain structual information
by, for example, calculating the virial expansion of the direct
correlation function. Preliminary results are reported in �27�.

IV. THEORETICAL RESULTS

Using the above method, values of B2-B8 were calculated
for the isotropic, nematic, and cubatic phases. This then gave
the equations of state for both the isotropic-nematic and
isotropic-cubatic phase transitions at each virial level, for
L /D=0.1, 0.15, 0.2, 0.25, and 0.3. These are compared in
Fig. 1 with the equations of state obtained from simulation
�Sec. V�. The coexistence densities, pressures, and order pa-
rameters at coexistence are given in Table I.

For L /D=0.1, the nematic phase is predicted to be stable
with respect to the cubatic phase. That is, the isotropic-
nematic phase transition occurs at a lower density than the
isotropic-cubatic phase transition. This is true for all levels of
the virial theory. This is consistent with simulation results,
where a nematic phase is formed from the isotropic phase. At
the B2-B4 level, the cubatic transition is predicted at a much
higher density than the nematic transition, and at the B5-B8
level, no stable cubatic transition is observed. The predicted
coexistence densities for the isotropic-nematic phase transi-
tion converge fairly rapidly. From B3-B6 level theory, the
coexistence densities are fairly consistent, with some fluctua-
tion about the “true” values. From B7-B8 level theory, no
stable transitions are observed, which could be due to the
relatively low value of these virials for L /D=0.1, which
means there is a large error in its calculation, and also due to
the negative isotropic virial values for B7 causing a fall in
pressure at high density. The calculated equations of state
also converge on the equation of state obtained by simula-
tion, and the predictions are particularly good at lower den-
sities, with some divergence at higher densities. This is to be
expected, as the higher-order virials account for many-body
effects, which become important at higher densities.

For L /D=0.15–0.3, the theory predicts a stable cubatic
phase at high-order virial theory, consistent with simulation.
At low-order theory, a nematic phase is predicted. For L /D
=0.15, it is not until B8 level theory that a cubatic phase is
predicted. At B2-B4 level theory, the isotropic-cubatic phase
transition is predicted at a much higher density than the
isotropic-nematic phase transition. At the B5-B7 level, no
stable cubatic phase is observed, and it is only at B8 level
theory that a cubatic phase is predicted that is stable with
respect to the nematic phase. It can be seen in Fig. 1 that the
B8 level predicted equation of state seems to be reaching a
plateau. For a truncated series, negative coefficients may lead

DUNCAN et al. PHYSICAL REVIEW E 79, 031702 �2009�

031702-4



to a plateau, or even a negative value of � 	P
	� �T. For a per-

fectly ordered cubatic phase, B4 and B5 are negative, while
B7 and B8 are positive, leading to the observed behavior. For
L /D=0.2 and 0.25, the behavior is similar, except that an
isotropic-cubatic transition is observed at B5 level theory, at a
density just higher than the isotropic-nematic transition.
Again, no isotropic-cubatic transition is observed at the
B6-B7 level, and at B8, a stable cubatic phase is predicted
with respect to the nematic phase. Finally, at L /D=0.3, the
nematic phase is predicted to be the stable phase at B2-B5
level theory, but at the B6 level, the cubatic phase is pre-

dicted to be stable with respect to the nematic. The isotropic-
cubatic transition is lost at the B7 level, but at B8, it is again
observed to be stable with respect to the nematic phase. It
can be seen from this that it is the high-order ��B6� virial
coefficients that stabilize the cubatic phase. As these high-
order virial coefficients take many-body interactions into ac-
count, it is these many-body interactions that must stabilize
the cubatic phase.

The convergence of the predicted coexistence densities
for these particles is much less rapid for the cubatic phase
than for the nematic phase predicted for L /D=0.1. This is
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FIG. 1. Comparison of equations of state obtained from the virial expansion with those obtained by computer simulation. The insets show
the equation of state from simulation over a wider density range: compression runs starting from isotropic phase ���, expansion and
compression runs starting from a point in the nematic or cubatic phases ���, and expansion runs from the solid phase �triangles�.
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TABLE I. Coexistence data for the isotropic-nematic and isotropic-cubatic phase transitions at various
levels of virial theory. P

N
* �P

C
*� is the pressure at the isotropic-nematic �isotropic-cubatic� phase transition,

and �
I
* and �

N
* ��

C
*� are the densities of the coexisting isotropic and nematic �cubatic� phases, respectively.

L /D=0.1

Virial level �
I
* �

N
* P

N
* �

I
* �

C
* P

C
*

B2 0.615 0.725 3.937 3.265 3.366 98.447

B3 0.273 0.325 1.827 0.571 0.610 11.862

B4 0.240 0.283 1.688 0.325 0.389 3.867

B5 0.256 0.293 1.906 * * *

B6 0.342 0.401 2.605 * * *

B7 * * * * * *

B8 * * * * * *

L /D=0.15

Virial Level �
I
* �

N
* P

N
* �

I
* �

C
* P

C
*

B2 1.049 1.206 8.400 4.602 4.733 147.869

B3 0.420 0.490 3.584 0.807 0.851 19.339

B4 0.355 0.412 3.263 0.465 0.521 7.181

B5 0.364 0.417 3.671 * * *

B6 0.405 0.457 4.533 * * *

B7 0.475 0.500 5.770 * * *

B8 0.484 0.504 5.819 0.366 0.374 3.241

L /D=0.2

Virial level �
I
* �

N
* P

N
* �

I
* �

C
* P

C
*

B2 1.593 1.794 15.828 5.868 5.969 200.885

B3 0.576 0.660 6.176 1.089 1.148 33.110

B4 0.466 0.533 5.452 0.600 0.657 11.831

B5 0.457 0.527 5.909 0.460 0.578 5.995

B6 0.476 0.544 6.657 * * *

B7 0.495 0.558 7.219 * * *

B8 0.500 0.563 7.246 0.484 0.512 6.572

L /D=0.25

Virial Level �
I
* �

N
* P

N
* �

I
* �

C
* P

C
*

B2 2.526 2.271 27.818 7.085 7.160 257.573

B3 0.742 0.841 9.848 1.222 1.262 37.268

B4 0.572 0.653 8.281 0.701 0.746 15.739

B5 0.538 0.615 8.463 0.551 0.622 9.134

B6 0.539 0.615 8.986 * * *

B7 0.541 0.617 9.096 * * *

B8 0.538 0.622 8.825 0.493 0.521 6.540

L /D=0.3

Virial Level �
I
* �

N
* P

N
* �

I
* �

C
* P

C
*

B2 3.122 3.409 46.997 8.579 8.697 341.763

B3 0.918 1.021 14.919 1.422 1.454 48.614

B4 0.676 0.758 11.887 0.807 0.843 21.073

B5 0.614 0.692 11.504 0.631 0.687 12.647

B6 0.595 0.674 11.471 0.558 0.645 9.020

B7 0.585 0.668 11.154 * * *

B8 0.571 0.670 10.370 0.529 0.570 7.719
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partly due to the more spherical shape of the particles, for
which the phase transitions occur at a higher packing frac-
tion, as the virial expansion converges much faster at lower
packing fractions. However, as no stable cubatic phase is
found at B6 and B7 level theory for L /D=0.15–0.25, and at
the B7 level for 0.3, it is not possible to say if the predicted
coexistence densities are converging at all. The predicted
densities at B8 level theory are somewhat lower than those
found from simulations �see Table II�, though for L /D
=0.15 the predicted results are quite close �note that these are
the least spherical shaped particles that exhibit cubatic be-
havior�, but without any observed convergence of the virial
theory, it is not possible to predict if further virial expansion
would give more accurate results. As the particles become
more spherical, the predicted equation of state at B8 level
theory for the cubatic phase gets further from the equation of
state obtained via simulations, which is to be expected due to
the higher packing fractions at which these phases occur.

V. SIMULATION RESULTS

A. L ÕD=0.1

In order to examine the phase behavior, we have per-
formed Monte Carlo compression and expansion runs as de-
scribed in Sec. II. The resulting equation of state is shown in
Fig. 1 and is in good agreement with that of Veerman and
Frenkel �9�. Table II lists the location of the phase transitions
in the system. The succession of phases observed are illus-
trated by the snapshots of Fig. 2�b�–2�e�. With increasing
pressure these are isotropic, nematic, and columnar and
solid. This is in agreement with the results of Ref. �9�. How-
ever, we also observed a metastable cubatic phase on com-
pression from an isotropic configuration at densities ap-
proaching the columnar region of the phase diagram. We
shall return to this later.

In addition to viewing snapshots from the simulations, the
different phases can be distinguished using the distribution
functions introduced in Sec. II A. These have been studied in
detail by Veerman and Frenkel �9�. Our purpose here is
merely to use them to aid identification of the phases.

The main signature of the nematic phase is in g2�r� �Fig.
3�a��. In the isotropic phase, this decays to zero. At higher
density, in the nematic phase, the limiting value is finite,
reflecting the long-range orientational order. The nematic or-
der parameter is plotted as a function of density in Fig. 4.
This clearly shows the isotropic-nematic phase transition. In
the 216- and 512-particle systems, nematic order developed
spontaneously during the compression runs at a pressure of
P*�2.80. We were unable to observe the formation of a
nematic during the 1728-particle compression runs. This is
due to the long runs required for equilibration. Instead, Fig. 4
shows the results from the expansion run beginning from a
perfect nematic. The order parameter is essentially the same
in the nematic phase for all system sizes, but shows typical
system-size dependence in the isotropic phase. There is a
sharp change in Snem at the phase transition, and from this we
locate the coexistence densities at �*=0.351–0.371. These
are higher than Veerman and Frenkel’s values of �*

=0.330–0.335 �9�, but are consistent with the values in Refs.
�10,11�. The difference may be due to the fact that our simu-
lations and those in Refs. �10,11� are carried out in the NPT
ensemble, whereas those in Ref. �9� are carried out in the
NVT ensemble. Reference �9� also uses a smaller number of
particles, but Fig. 4 shows that the system size does not
significantly affect the transition density.

In the 216- and 512-particle runs, upon further compres-
sion, the system enters the columnar phase at a pressure of
P*=4.31. This corresponds to a discontinuity in the equation
of state between the densities �*�0.437 and 0.482. Veerman
and Frenkel gave the coexistence densities for this transition
as �*=0.497–0.546 �9�. We have not attempted to locate the
transition accurately, but we note that the coexistence densi-
ties reported in Ref. �11� are also lower than Veerman and
Frenkel’s. We can distinguish between the nematic and co-
lumnar phases using gP�r�� �Fig. 3�b��. In the nematic phase,
this is rather featureless, whereas in the columnar phase,
there is structure due to the ordering of the columns in the
plane.

At higher pressure still, there is a transition to the solid
phase. This can be seen in g�r
� obtained in the expansion

TABLE II. Approximate phase boundaries as determined by simulation. For the isotropic-nematic,
nematic-columnar, and isotropic or cubatic-columnar transitions, the pressure at coexistence and the density
of the coexisiting phases is given. For the isotropic or cubatic transition, the ranges of pressure and density
within which the transition occurs are given.

Transition

L /D

0.1 0.15 0.2 0.25 0.3

Isotropic-nematic �* 0.351, 0.371 * * * *

P* 2.74 * * * *

Isotropic or cubatic �* * 0.4–0.57 0.5–0.62 0.52–0.65 0.55–0.67

P* * 3.5–7.0 4.6–9.1 6.6–10.6 8.0–11.9

Nematic-columnar �* 0.437, 0.482 * * * *

P* 4.15 * * * *

Isotropic or cubatic-columnar �* * 0.450, 0.546 0.448, 0.542 0.490, 0.612 0.537, 0.655

P* * 4.68 5.43 5.76 6.87
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runs from the close-packed solid �Fig. 3�c��. In the columnar
phase, the correlations between particle positions along a
column die out within about one particle diameter. In the
solid phase, the correlations are long ranged. It is very diffi-
cult to give a precise location for this transition, but it is in

the vicinity of �*�0.8, as also reported in Ref. �9�.
It was mentioned earlier that we sometimes obtain a cu-

batic phase on compression from an isotropic configuration.
We first noticed this in an initial compression run for L /D
=0.1 with 1728 particles. We did not observe a nematic
phase as expected, but instead a metastable cubatic phase
was observed at densities where the columnar phase might
be expected.

In order to establish whether the nematic is stable for this
aspect ratio, we have carried out long equilibration runs at
two different state points with either an isotropic or a perfect
nematic starting configuration. At P*=3.52, from either start-
ing configuration the equilibrium structure is nematic as ex-
pected. We repeated the procedure at the higher pressure of
P*=5.09, which we expect to be in the columnar phase. In
the run starting from the perfect nematic configuration, the
particles arranged themselves into columns within 106 MC
cycles. On the other hand, extremely long runs ��107 MC
cycles� are required to equilibrate columnar order starting
from an isotropic configuration. The sequence of snapshots
in Fig. 2�a� shows the processes occurring. Within 106 MC
cycles the particles form into short stacks and it appears at
this stage as if we have a cubatic phase. It is then a very slow
process for these stacks to rotate into the same direction to
form a columnar structure. These results show, at least for
L /D=0.1, that the cubatic is a metastable defective columnar
phase, which forms as a transient structure as the system
equilibrates.

B. Multiparticle move

The extremely long runs required for equilibration have
proved something of a barrier in establishing which phase is
thermodynamically stable at a particular state point. One way
around this problem might be to implement a multiparticle
move to improve sampling. A simple idea due to Jaster �24�
is the following. If a particle move causes an overlap, the
particle with which it overlaps is also moved, and if this
causes an overlap, the next overlapping particle is moved
and so on. This continues until there are no further overlaps.
If there are two overlaps at any point, the move is rejected.
This scheme proved surprisingly effective in equilibrating
the nematic phase. Figure 5 compares the evolution of the
nematic order parameter during one run in which the multi-
particle moves were used and one in which they were not. In
terms of the number of Monte Carlo cycles required to reach
equilibrium, the improvement is dramatic. Of course, the
CPU time per MC cycle will increase, but this turns out to be
only by a factor of about 1.5.

For state points in the columnar, the multiparticle moves
seem less effective. The moves provide only a marginal im-
provement in the length of run required to enter the columnar
phase from an isotropic initial configuration.

C. L ÕD=0.15,0.2,0.25,0.3

For all other values of the aspect ratio L /D, the following
phases were found �from lowest to highest pressure�: isotro-
pic, cubatic, and columnar, and solid. This agrees with Veer-

(a)

(b) (c)

(d) (e)

(f)

FIG. 2. �Color online� �a� Snapshots during an equilibration run
for L /D=0.1 and P*=5.09: initial isotropic configuration, after 106

Monte Carlo cycles, after 2�106 MC cycles, and after 5.8�106

MC cycles. �b�–�f� Snapshots illustrating equilibrium structures: �b�
isotropic phase �L /D=0.1, P*=1.17�, �c� nematic phase �L /D
=0.1, P*=3.13�, �d� columnar phase �L /D=0.1, P*=7.83�, �e� solid
phase �L /D=0.1, P*=31.3�, and �f� cubatic phase �L /D=0.2, P*

=7.29�.
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man and Frenkel’s study �9�, in which the cubatic phase was
seen at L /D=0.2 and 0.3 �although they found the phase to
be metastable at L /D=0.3�. We further observe a cubatic
phase at L /D=0.15 and 0.25. However, in expansion runs
from the crystalline state the cubatic phase was not observed;
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FIG. 3. Pair correlation functions characterizing different
phases. �a� g2�r� for L /D=0.1 in the isotropic �P*=1.17,2.74� and
nematic �P*=2.90,4.70� phases. �b� gP�r�� for L /D=0.1 in the
nematic �P*=3.52� and columnar �P*=5.09� phases. �c� g�r
� for
L /D=0.1 in the columnar �P*=7.83� and solid �P*=31.3� phases.
�d� Orientational correlation functions gl�r� in the cubatic phase for
L /D=0.2 at P*=7.75.
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FIG. 4. Nematic and cubatic order parameters as a function of
density for different system sizes: 216 particles �squares�, 512 par-
ticles �circles�, and 1728 particles �triangles�. For L /D�0.15 open
symbols show Scub and solid symbols show Snem.
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the system melted directly from the columnar to the isotropic
phase at a pressure lower than the isotropic-cubatic transition
seen in the compression runs.

The equations of state obtained from the compression and
expansion runs are shown in Fig. 1. The equations of state
for L /D=0.2 and 0.3 are in good agreement with those in
Ref. �9�. In Fig. 2�f� we show a snapshot of the cubatic
phase, and we can confirm the identification by examining
correlation functions. As an example, the orientational corre-
lation functions gl�r� are shown for a particular state point in
the cubatic region in Fig. 3�d�. g4�r� becomes increasingly
long ranged with increasing density into the cubatic phase,
whereas g2�r� and g6�r� decay within two disk diameters.
This is due to the cubic symmetry of the cubatic phase. g8�r�
should also decay to a finite value, but at the higher value of
l this value may be so small as to be indistinguishable from
the noise. The decay of g8�r� certainly becomes slower as
density is increased.

The cubatic and nematic order parameters are plotted as a
function of density in Fig. 4. Noting that in the cubatic phase
Scub is high, while Snem is low, we can see a transition from
the isotropic to the cubatic phase for all four values of L /D.
Also apparent is a strong finite-size effect. The transition
shifts to higher densities as system size increases.

Unfortunately, the rise of the cubatic order parameter with
density across the isotropic-cubatic transition is not very
sharp, and Fig. 4 does not provide an accurate estimate of the
phase boundary. The best that can be done is to give a range
based on this and the hysteresis in the equation of state.
These estimates are shown in Table II. For comparison, Veer-
man and Frenkel �9� give the range �*=0.54–0.57 for L /D
=0.2. Despite the imprecision of these results, it can be seen
that the isotropic-cubatic transition shifts to higher density as
L /D increases, in accordance with the trend in the theoretical
results. The upper bounds of these ranges we have ascribed
to the transitions lie within the cubatic-columnar coexistence
regions determined from free-energy calculations by Veer-
man and Frenkel �9�; hence, an isotropic-columnar transition
might occur at a density before the transition to the cubatic
phase, in which case the cubatic phase would be metastable.

Because of the difficulty in locating the phase transitions
accurately, we cannot answer this question definitively.

In Table II we also provide estimates for the location of
the transition from the isotropic-cubatic branch to the colum-
nar branch. Since we were unable to observe the cubatic
phase convert to the columnar during the compression runs,
we give as a lower bound for the transition pressure the point
at which the columnar converts to isotropic during the ex-
pansion runs. The discontinuities in the equations of state
corresponding to these lower bounds naturally lie at lower
density than the coexistence densities obtained by Veerman
and Frenkel ��*=0.59,0.66 for L /D=0.2 and �*

=0.592,0.689 for L /D=0.3�.
Finally, at high pressure is the columnar-solid transition.

As for the L /D=0.1 case, the main signature of this transi-
tion is found in g�r
�, but it is difficult to locate with any
accuracy. Our results are consistent with Veerman and Fren-
kel’s estimate of �*�0.73 for L /D=0.2 �9�.

It is clear from both simulation and theory that the cubatic
phase is stable over the nematic phase for aspect ratios
L /D�0.15. The stability of the cubatic phase against the
columnar phase is not so clear, especially in light of our
discovery of a metastable cubatic at L /D=0.1. To address
this issue, we have carried out equilibration runs for L /D
=0.2 at state points in the cubatic �P*=7.29� and columnar
�P*=15.44� regions of the phase diagram with isotropic or
perfect nematic starting configurations. At both state points
the results were the same: starting from the nematic configu-
ration, the system becomes columnar and remains there;
starting from the isotropic configuration, the system becomes
cubatic and remains there. At both state points, in runs up to
6�107 MC cycles, there is no sign of the cubatic converting
to columnar or vice versa, and hence we cannot draw any
conclusions about the relative stability of the two phases.

To obtain a definite answer, one must either find Monte
Carlo moves that allow the cubatic and columnar phases to
interconvert or else one must be able to accurately determine
the free energies of the cubatic and columnar phases and
thereby decide which is the most stable. Apart from the pre-
viously described multiparticle move due to Jaster, our at-
tempts to find effective Monte Carlo moves include rotations
of stacks of particles by 90°, following the ideas given in
Refs. �13,28�, and also variations of the rejection-free algo-
rithm of Liu and Luijten �29�. To date none of these algo-
rithms have proved successful though we are still exploring
other possible cluster moves. We are concurrently conduct-
ing free-energy calculations using the expanded-ensemble
method and this approach shows signs of promise.

VI. CONCLUSIONS

We have investigated the phase behavior of a system of
hard-cut spheres theoretically and by computer simulation.
Using a high-order virial theory, a stable nematic phase has
been predicted for cut spheres of aspect ratio L /D=0.1 and a
stable cubatic phase predicted for L /D=0.15–0.3, consistent
with simulation results. The necessary inclusion of the high-
order virials to predict the cubatic phase implies that it is
many-body excluded-volume interactions which stabilize the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

S n
em

MC cycle / 106

FIG. 5. Nematic order parameter during equilibration runs with
�dashed line� or without �solid line� multiparticle moves for a 216
particle system with L /D=0.1 at a pressure of P*=3.52.
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cubatic phase. Truncation of the virial theory at low order
��B5� will not predict a cubatic phase, so the high-order
virials are vital to this theory. Truncation at these low levels
gives poor predictions of the transition densities, and trunca-
tion at B6-B7 gives no predicted transition, due to the nega-
tive values of the virial coefficients. At B8 level theory, rea-
sonable predictions of the equation of state and transition
densities are obtained, and the predictions become much
more accurate for the less spherical cut spheres, due to the
lower packing fractions at which the phase transitions occur
for these particles. Overall though, the virial expansion offers
an accurate way of predicting stable cubatic phases.

Previous simulation work on this system has covered the
aspect ratios L /D=0.1, 0.2, and 0.3. Our simulations also
include L /D=0.15 and 0.25. Since equilibration in some
cases requires extremely long runs, we have implemented a
multiparticle move due to Jaster �24�. This proved extremely
effective in the equilibration of the nematic phase.

We have shown that the nematic phase is stable with re-
spect to the cubatic phase for L /D=0.1 and that the opposite

is true for L /D�0.15. This is in accordance with our theo-
retical results.

We have investigated further the stability of the cubatic
phase by performing long runs at particular state points. We
have shown that the cubatic phase observed for L /D=0.1 in
the columnar region of the phase diagram is metastable. On
compression from an isotropic configuration, the system ini-
tially adopts a cubatic structure. It is only after an extremely
long run �of order 107 MC cycles� that the short stacks of
particles are able to rotate to form a columnar structure. We
attempted in the same way to probe the relative stability of
the cubatic and columnar phases for L /D=0.2. We saw no
sign of the cubatic phase converting to columnar or vice
versa in runs up to 6�107 MC cycles in length. Our results
are thus rather inconclusive. We are currently carrying out
free-energy calculations using the expanded-ensemble
method with the aim of providing a more definitive answer
to this question.
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